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Abstract

We develop a dynamic model of an order-driven market populated by discretionary
liquidity traders. These traders must trade, yet can choose the type of order and
are fully strategic in their decision. Traders differ by their impatience: less patient
traders demand liquidity, more patient traders provide it. Three equilibrium types
are obtained - the type is determined by three parameters: the degree of impatience
of the patient traders, which we interpret as the cost of execution delay in providing
liquidity; their proportion in the population, which determines the degree of com-
petition among the liquidity providers; and the tick size, which is the cost of the
minimal price improvement. Despite its simplicity, the model generates a rich set of
empirical predictions on the relation between market parameters, time to execution,
and spreads. We argue that the economic intuition of this model is robust, thus its
main results will remain in more general models.



1 Introduction

Limit and market orders constitute the core of any order-driven continuous trading
system (such as the NYSE, London Stock Exchange, Euronext, Tokyo and Toronto
Stock Exchanges, as well as all the ECNs).! A market order guarantees an immedi-
ate execution at the best price available at the moment of the order arrival at the
exchange. In general, a market order represents demand for liquidity (immediacy of
execution). With a limit order, a trader can improve his execution price relative to
the market order price, but the execution is neither immediate, nor certain. A limit
order represents supply of liquidity to future traders.?

The optimal order choice ultimately involves a tradeoff between the cost of a
delayed execution and the cost of immediate execution, which (for small transactions)
is determined by the size of the inside spread. Intuitively we expect patient traders
to post limit orders and supply liquidity to impatient traders, who opt for market
orders. In his seminal paper Demsetz (1968) stresses the limit orders as the source of
liquidity, pointing out the trade off between longer execution time and better prices.
He states (p.41):

“Waiting costs are relatively important for trading in organized markets, and would
seem to dominate the determination of spreads.”

He conjectures that more aggressive limit orders will be submitted to gain priority
in execution and shorten the expected time-to-execution. Moreover, he anticipates
that the active securities should have lower spreads because the competition from
limit orders will be fiercer in light of shorter waiting times. In this paper we explore
the interactions between traders’ impatience, order placements strategies and waiting
times in the context of a dynamic order-driven market.

Our model features buyers and sellers arriving sequentially. Each trader wants
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to buy or sell one unit of a security. We assume that these are liquidity traders,
i.e. they will buy/sell regardless of price. However, they choose between market and
limit orders so as to minimize their cost of trading. Upon arrival, the traders decide
to place a market order or a limit order, conditional on the state of the book. If
submitting a limit order the trader chooses a price and bears the opportunity cost of
postponing the trade.

Under several simplifying assumptions we are able to develop a recursive method
for calculating the order placements strategies and the expected time-to-execution for
limit orders. In general, in equilibrium, patient traders provide liquidity to impatient
traders. We identify 3 types of equilibria characterized by markedly different dynamics
for the limit order book. These dynamics turn out to be very sensitive to the ratio
of the proportion of patient traders to the proportion of impatient traders. Actually
the larger is this ratio, the more intense is competition among liquidity suppliers.
They are also influenced by the dispersion of waiting costs across traders. Some of

our main findings can be summarized as follows.

=Limit orders time-to-execution are large when the proportion of patient traders
is relatively large. This effect enhances competition among liquidity providers
who submit more aggressive orders to shorten their time-to-execution. Hence
markets with a relatively large proportion of patient traders feature smaller

spreads.

=In order to speed up execution, traders frequently find optimal to undercut
or outbid the best quotes by more than one tick. This happens when (i) the
proportion of patient traders is relatively large, (ii) waiting costs are large or

(iii) the tick size is small.

=A decrease in the tick size can result in larger expected spreads. Actually it

gives the possibility to traders to quote less competitive prices by expanding



the set of prices. If competition among liquidity providers is weak, they use the

new prices and the average spread increases.

=A decrease in the order arrival rate can result in smaller expected spreads.
Intuitively, such a decrease extends the expected time-to-execution for limit
orders. This effect induces liquidity suppliers to place more aggressively priced

limit orders when the inside spread is large.

In some limit order markets, designated market-makers are required to enter bid
and ask quotes in the limit order book. This is the case, for instance, in the Paris
Bourse for medium and small capitalization stocks.> We consider the effect of intro-
ducing this type of trader in our model. We show that the presence of a trader who
monitors the market and occasionally submits limit orders, can significantly alter the
equilibrium. His intervention forces patient traders to submit more aggressive offers
in order to speed up execution and hence narrows the spreads. This result provides
important guidance for market design.

Our results contribute to the growing literature on limit order markets. Most of
the models in the theoretical literature are focused on the optimal bidding strategies
for limit order traders (see e.g. Glosten (1994), Chakravarty and Holden (1995),
Rock (1996), Seppi (1997), Biais, Martimort and Rochet (2000), Parlour and Seppi
(2001)). These models do not analyze the choice between market and limit orders and
are static. For this reason they do not describe the interactions between impatience,
time-to-execution and order placement strategies as we do in this paper.

Parlour (1998) and Foucault (1999) study dynamic models. Parlour (1998) shows
how the order placement decision is influenced by the depth available at the inside
quotes. Foucault (1999) analyzes the impact of the risk of being picked off and the
risk of non execution on traders’ order placement strategies. In both models, limit

order traders do not bear waiting cost. Hence time-to-execution does not influence
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traders’ bidding strategies in these models whereas it plays a central role in the present
article.*

We are not aware of other theoretical papers in which prices and time-to-execution
for limit orders are jointly determined in equilibrium. Time-to-execution, however,
is an important dimension of market quality in limit order markets (see SEC 1997).
Lo, McKinlay and Zhang (2001) estimate various econometric models for the time-to-
execution of limit orders. Some of their findings are consistent with our results, e.g.
the expected time-to-execution increases with the distance between the limit price
and the mid-quote. Our model also generates new predictions that could be tested
with data on actual time-to-execution for limit orders. For instance we show that the
average time-to-execution (across all limit orders) depends on (i) the tick size, (ii)
the order arrival rate and (iii) the proportion of patient traders.” Biais, Hillion and
Spatt (1995) describe the interactions between the size of the inside spread and the
order flow.® They observe that limit order traders quickly improve the inside spread
when it is large. In our model the amount by which a limit order trader undercuts or
outbids the best offers depends on (i) the inside spread, (ii) the proportion of patient
traders and (iii) the order arrival rate. These findings provide guidance for empirical
studies of limit order markets.”

The paper is organized as follows. Section 2 describes the model. Section 3

derives the equilibrium of the limit order market and provides examples. In Section
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4 we explore the effect of a change in tick size and a change in traders’ arrival rate on
measures of market quality. Section 5 presents some extensions. Section 6 concludes.

All proofs (except for Proposition 1) are in the Appendix.

2 Model

2.1 Timing and Market Structure

Consider a continuous market for a single security, organized as a limit order book
without intermediaries. We assume that latent information about the security value
determines the range of admissible prices, however the transaction price itself is de-
termined by traders who submit market and limit orders.® Specifically, at price A
outside investors stand ready to sell an unlimited amount of security, thus the sup-
ply at A is infinitely elastic. We also assume that there exists an infinite demand
for shares at price B (B < A). Moreover, A and B are constant over time. These
assumptions assure that all the prices in the limit order book are in the range [B, A].°
The goal of this model is to investigate the behavior of the limit order book and
transaction prices within this interval. This behavior is determined by the supply
and demand of liquidity, or in other words by optimal submission of market and limit
orders.

This is an infinite horizon model with discrete time periods. At the beginning
of every period a trader arrives at the market and observes the limit order book.
Each trader must buy or sell one unit of the security. These liquidity traders have a
discretion on which type of order to submit. Each trader can submit a market order
to ensure an immediate trade at the best quote available at the time. Alternatively,
he can submit a limit order, which improves the price, but delays the execution. We

assume that traders’ waiting costs are proportional to the time they have to wait until
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completion of their transaction. Hence traders face a trade-off between the execution
price and the time-to-execution when they choose between market and limit orders.
In contrast with Admati and Pfleiderer (1988) or Parlour (1998), traders are not
required to carry their desired transaction by a deadline.

All prices (but not waiting costs and traders’ valuations) are placed on a discrete
grid. The tick size, which is chosen by the exchange designer, is denoted by A > 0.
All the prices in the model are expressed in terms of integer multiples of A. We
denote by a and b the best ask and bid quotes when a trader comes to the market.
The inside spread at that time is s := a § b. Given the setup we know that a - A,
b_B,ands - K:=A §B.1°

Both buyers and sellers can be of two types which differ by the size of their
waiting costs. Type 1 traders (the patient type) incur an opportunity cost of d; for
an execution delay of one period. Type 2 traders (the impatient type) incur a cost
of d2 (0 - d; < dy). The proportion of patient traders in the population is denoted
by 6 (0 < 6 < 1). Patient types can be thought as institutions building up positions,
or other long-term investors. Arbitragers or brokers conducting agency trades are
examples of impatient traders.

Limit orders are stored in the limit order book and are executed in sequence
according to price priority (e.g. sell orders with the lowest offer are executed first).
For tractability, we make the following simplifying assumptions about the market
structure.

A.1: Each trader arrives only once, submits a market or a limit order and exits.
Submitted orders cannot be cancelled or modified.

A.2: Traders who submit limit orders must narrow the spread by at least one

tick.
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A.3: Buyers and sellers alternate with certainty, e.g. first a buyer arrives, then a
seller, then a buyer, and so on. The first trader is a buyer with probability 0.5.

Assumption A.1 implies that traders in the model do not adopt active trading
strategies which may involve repeated submissions and cancellations. These active
strategies require market monitoring, which is costly (e.g. because liquidity traders’
time is valuable). The second assumption implies that limit order traders cannot
queue at the same price (note however that they queue at different prices since limit
orders do not drop out of the book). With this assumption, the inside spread is
the only state variable which influences traders’ order placement strategies. This
greatly simplifies the description and the characterization of traders’ order placement
strategies. This assumption is less restrictive than it may appear. In Section 6, we
show that we can dispense with assumption A2 if patient traders’ waiting cost is
large enough. The third assumption facilitates the computation of traders’ expected
waiting time and is imperative to keep the model tractable (see Section 3.1. for a
discussion).

Let p, and p, be the prices paid by buyers and sellers, respectively. In our model,
as in Admati and Pfleiderer (1988) for instance, traders do not have the option not
to trade. Thus their only decision is a choice of strategy resulting in a trade. A
buyer can either pay the lowest ask a or submit a limit order which creates a new
inside spread with size j. In a similar way, a seller can either receive the largest bid
b or submit a limit order which creates a new inside spread with size 7. This choice

determines the execution price:
m=a ij; ps=>b+jwith j 210,..,s 110,

where j = 0 represents a market order. It is convenient to consider j (rather than
Py Or ps) as the trader’s decision variable. For brevity, we say that a trader uses a
“j-limit order” when he posts a limit order which creates a spread with size j. The

expected time-to-execution of a j-limit order is denoted by T'(j). Since the waiting



costs are assumed to be linear in waiting time, the expected waiting cost of a j-limit
order is d;T(j), i 2 F,29. As a market order entails immediate execution, we set
T(0) =0.

We assume that traders are risk neutral. The expected profit of trader i (i 2 11, 29)

who submits a j-limit order is:

8

=V ipA i diT(G) = (Vo 1ad) +7A §d;T(5) if trader ¢ is a buyer
Hi(j) =
= psA § Vs 1diT(5) = (A §Vys)+JjA §d;T(j) if trader ¢ is a seller

where V;, Vi are buyers’ and sellers’ valuations, respectively. To justify this classifica-
tion to buyers and sellers, we assume that V, >> AA, and V, << BA.!! Expressions
in parenthesis represent profits associated with market order submission. These prof-
its are determined by the trader’s valuation and the best quotes when he submits
his market order. It is immediate that the optimal order placement strategy when
the inside spread has size s solves the following optimization problem, for buyers and

sellers alike:

X mi(7) = JA § &T(j). (1)

We will show that T'(j) is non-decreasing in j, in equilibrium. Hence a better
execution price (larger value of j) is obtained at the cost of a larger expected waiting
time.

A strategy for a trader is a mapping that assigns a j-limit order, j 2%, ...,s § 10,
to every possible spread s 2 fi,..., Kg. Thus, a strategy determines which order to
submit given the size of the inside spread. At the beginning of the game we set:
a = Aand b = B hence s = K. Let 0;(.) be the order placement strategy of a
trader with type 7. A trader’s optimal strategy depends on future traders’ actions
since they determine his expected waiting time, 7'( g Consequently a subgame perfect
equilibrium of the trading game is a pair of strategies, oj(.) and 03(.), such that the

order prescribed by each strategy for every possible inside spread solves Program (1)
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when the expected waiting time T'(@is computed using the fact that traders follow

strategies o%(.) and 03(.).1?

2.2 Discussion

It is worth stressing that we abstract from the effects of asymmetric information and
information aggregation. This is a marked departure from the “canonical model”
in theoretical microstructure literature, surveyed in Madhavan (2000), and requires
some motivation.

In most market microstructure models, quotes are determined by agents who
have no reason to trade, and either trade for speculative reasons, or make money
providing liquidity. For these wvalue-motivated traders, the risk of trading with a
better informed agent is a concern and affects the optimal order placement strategies.
In contrast, in our model, traders have a non-information motive for trading and
are precommited to trade. The risk of adverse selection is not an issue for these
liquidity traders. Rather, they determine their order placement strategy with a view
at minimizing their transaction cost and balance the cost of waiting against the cost
of obtaining immediacy in execution.'® In order to focus on this trade-off in the
simplest way, we propose a framework that allows for a simple dichotomy between
“macro” information-based asset pricing and market “micro”structure. We assume
that information-related considerations determine the price range, rather than the
price itself. The equilibrium in the market for liquidity provision determines quotes
inside this range. At this stage we do not model the determination of this range, but
rather assume that it exists. For fixed income securities these boundaries are quite
natural, given the existence of close substitutes. In case of equities we conjecture

that this price range represents the consensus among all analysts/investors, yet is not

12T he nuks of the game, as welll a5 alll the paraneters are assumed o be canman knonkedge
amayg all the tradars.

134 armis ((998)andt bsten Q)00 )akoarg e thattimal aderp bcamattstrateges are d@yant
o Iquidity traders and valbe-motivaled triedars -



subject to arbitrage (see Shleifer and Vishny 1997).

The trade-off between the cost of immediate execution and the cost of delayed
execution may be relevant for value-motivated traders as well. However, it is very
difficult to solve dynamic models with asymmetric information among traders who
can strategically choose between market and limit orders. In fact we are not aware

of such dynamic models.'4

3 Equilibrium Patterns

In this section we characterize the equilibrium strategies for each type of trader. For
given values of the parameters, the equilibrium is unique. We also calculate the
stationary probability distribution of the inside spread in equilibrium. The dynamics
of the order flow and the distribution of the inside spread depend on (i) the proportion
of patient traders relative to the proportion of impatient traders and (ii) the difference
in waiting costs between patient and impatient traders. This leads us to distinguish
between three different types of equilibria. We provide examples which illustrate the

attributes of each one of the three equilibrium types.

3.1 Expected Waiting Time

In order to characterize the equilibrium, we first analyze the behavior of the expected
waiting time function 7°(j). Suppose the trader arriving this period chooses a j-limit
order. We denote by a4 (j) the probability that the trader arriving next period and
observing an inside spread with size j chooses a k-limit order, ¥ 2,1, ...,5 i 19.'°
Clearly ai(j) depends on traders’ strategies and

»’(—1
ar(j)=1,8=1,.,K jl.
k=0
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Assumption A.2 implies that a trader who faces a one tick spread submits a market
order. Consequently, the time-to-execution for a 1-limit order is one period, i.e.
T(1) = 1. Next, we establish a general recursive formula for the expected waiting
time function. This formula links the expected waiting time function to traders’ order

placement strategies (described by the as’).

Lemma 1 If ag(j) > 0, the expected waiting time for the execution of a j-limit order

is given by the following recursive formula:

2 3
T(j) = aol(j) 41+j‘1ak(j)T(k)5 8§=2..KiladT(1)=1 (2

Two extreme cases are worth emphasizing. The first is when no trader submits
a market order when he faces a spread with size j*. In this case ay(j*) = 0 and the
expected waiting time of a j-limit order, with j _ j*, is infinite. Such limit orders
will never be submitted in equilibrium, since they are dominated by a market order.
Hence, in equilibrium, the expected waiting time of limit orders is always finite. This
implies that limit orders execute with certainty.'® The second case is when all traders
submit a market order when they face a spread with size j**. In this case T'(j**) = 1.
It will become apparent that no spreads smaller than j** and larger than j* can be
observed in equilibrium. In between, there is a variety of cases in which some traders
find it optimal to submit limit orders, while others submit market orders.

Assumption A.3 is used to obtain the expected waiting function (Eq.(2)). The
alternation of buyers and sellers yields a simple ordering of the queue of unfilled
limit orders (the book): a j-limit order cannot be executed before j'-limit orders
where j < j. This is of course true when we consider two buy or two sell limit orders
because of price priority. Without A.3, this would not be true however if the j-limit
order and the j'-limit order are in opposite direction (a buy order and a sell order

for instance). The ordering implied by A.3 explains why the expected waiting time
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has a simple recursive structure. Without this recursive structure, it becomes very
difficult to compute the expected waiting time function and the model is (in general)

intractable.

3.2 Equilibrium strategies

Although the trading game has an infinite horizon, the nodes with one-tick spread
serve as end-nodes in the usual finite game trees, since everybody submit a market
order. Thus we can solve the game by backward induction. To see this point, consider
a trader who arrives in the market when the size of the inside spread is s = 2. The
trader has two choices: either he submits a market order or a 1-limit order. The latter
improves his execution price by one tick compared to a market order but results in a
one period delay in execution. Choosing the best action for each type of trader, we
determine ay(2) (for £ =0 and k = 1). If ag(2) = 0, the expected waiting time for a
2-limit order is infinite. It follows that no spread larger than one tick can be observed
in equilibrium. If a(2) > 0,we compute T'(2) (using Eq.(2)). Then we proceed to
s = 3 and so forth. This inductive approach is the key to most results in the paper.

Three results follow immediately. First, as this is a game of perfect information an
equilibrium in pure strategies always exists. Second, since this is a one-play game for
each trader, there are no Nash equilibria (in pure strategies) other than the sub-game
perfect equilibria that we trace by backward induction. And third, the equilibrium is
unique for any tie-breaking rule. We choose the following rule. If a trader is indifferent
between a j;-limit order and a js-limit order, with j; < js, he submits the limit order
with the smallest spread (in this case the j;-limit order).

We proceed by proving results that characterize the equilibrium. Traders submit
limit orders only if they can cover their waiting cost. Since limit orders wait at least
one period, there is a spread below which a trader strictly prefers to use market orders.
We refer to this spread as being the trader’s “reservation spread” and we denote it 51

for trader ¢ (¢ 2 f1,2g). This the smallest spread trader i is willing to establish with

12



a limit order, and still the associated expected profit is greater than zero (dominates
a market order). In order to give a formal definition of the reservation spread, let
int(x) be the largest integer smaller than or equal to z. The reservation spread of
7

trader i is:!

g = int(%) +1 i 21,29 (3)

Clearly, the reservation spread of a patient trader cannot exceed that of an impatient
one, however the two can be equal. The latter case yields the first equilibrium type for
all values of other parameters. We say that the two trader types are indistinguishable
if they possess the same reservation spreads: j® := jF = ;&  Intuitively, traders
are indistinguishable if the two waiting costs fall into the same cell on the grid:

0,A), [A,2A), [2A, 3A), ....

Proposition 1 Suppose traders’ types are indistinguishable (51 = jIt = j%) then, in
equilibrium all traders submit a market order if s - j% and submit a j%-limit order

if s > jE.

The proof of Proposition 1 is simple and intuitive hence we present it here instead
of relegating it to the Appendix. Consider a trader who arrives in the market when
the inside spread is s > j¥. If he submits a j-limit order with j¥ < j then the next
trader submits a j®-limit order given the specification of traders’ strategies. This
implies that ap(j) = 0 (i.e. the waiting time is infinite) for j® < j. Therefore a
j-limit order with j® < j cannot be optimal since it is never executed. If the trader
submits a jf-limit order, his order is cleared by the next trader. By definition of the
reservation spread, this choice dominates a market order. This establishes that when
the inside spread is larger than traders’ reservation price, the optimal strategy is to
submit a j®-limit order. Finally consider a trader who arrives in the market when the

spread is s - j®. By definition of the reservation spread, the submission of a market
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order is a dominant strategy for this trader. This completes the proof of Proposition
1.

The equilibrium with indistinguishable traders is characterized by an oscillating
pattern. The first, as well as every odd-numbered trader afterwards, submits a limit
order which creates a spread with size j%. The second, and every even-numbered
trader afterwards, submits a market order. The inside spread oscillates between K
and j% and transactions take place only when the spread is small. Trade prices are
either A j j¥ if the first trader is a buyer, or B + jf, if the first buyer is a seller.
The outcome is competitive in the sense that limit order traders always quote their
reservation spread, that is the spread such that they just cover their waiting cost.!®

After characterizing the first type of equilibrium, we proceed by assuming that
traders are heterogeneous: jf* < jE. Given two spreads j; < jo we denote by by, jo1i
the set: i, 51+ 1,71+ 2, ..., j20, i.e. the set of all possible spreads between j; and j,

(inclusive). In particular, the range of all possible spreads is R, K'IL.

Proposition 2 Suppose traders are heterogeneous (j&t < j&). In equilibrium there

exists a cutoff spread s, 2 i K1 such that:

1. Given a spread s 2 1, 1, patient and impatient traders submit a market order.

2. Given a spread s 2 BE + 1, 5.1, a patient trader submits a limit order and an

impatient trader submits a market order.

3. Given a spread s 2 B3, + 1, K1, patient and impatient traders submit a limit

order.

The proposition shows that when j* < j& the state variable s (the inside spread)

is partitioned into three regions: (i) s - jft, (ii) j® < s - s. and (iii) s > s.. The
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reservation spread of the patient trader, j*, represents the smallest spread observed
in the market. At the other end s, is the largest quoted spread in the market. Limit
orders which create a larger spread have an infinite waiting time since no traders
submit a market order when the inside spread is larger than s.. Hence these limit
orders are never submitted. This observation permits us to restrict our attention to
cases where s, = K, for brevity. This equality holds true when the cost of waiting for
an impatient trader is sufficiently large.!® Under this condition impatient traders al-
ways demand liquidity (submit market orders), while patient traders supply liquidity

(submit limit orders) when the inside spread is larger than their reservation spread.

Proposition 3 Suppose s, = K. Any equilibrium exhibits the following structure:
there exist q spreads, ny < ny < ... < ng, withny = jf, ng =K and 2 - q - K, such

that the optimal order submission strategy is as follows:

=2 An impatient trader submits a market order, for any spread in R, K1

=2 A patient trader submits a market order when he faces a spread in K, n.1 and
submits a ny-limit order when he faces a spread in tmy, + 1,n, (1 for h =

1,....,qg 1 1.

Hence when a patient trader faces an inside spread with size nj,; > j&, he
responds by submitting a limit order which improves upon the inside spread by
(npe1 & mp) ticks. This order establishes a new inside spread equal to n,. When
the inside spread is K, it takes a streak of ¢ j 1 patient traders to bring the inside
spread to the competitive level j%. Hence ¢ determines the maximal number of limit
orders which can be observed in the book. We refer to q as the length of the book. A
small length of the book means that patient traders quickly make good offers since it

takes a few patient traders to bring the spread to the competitive level.

PRarirstene, sc = K ifJf  _ K: Itis warth stiessing that this aonditian is sue=dent but not
necssary.- In Bxamples 2 and 3 bebwy, J§ is mudh smaller then K butse = K:
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Next we analyze the expected waiting time in equilibrium. Let r := 1%0 be the
ratio of the proportion of patient traders to the proportion of impatient traders.
Intuitively, when this ratio is smaller (larger) than 1, liquidity is consumed more
(less) quickly than it is supplied. As we show below, this ratio determines traders’

bidding strategies and time-to-execution for limit orders.
Proposition 4 The expected waiting time function in equilibrium is given by:
X
T(ny)=1 and T(ny)=1+2 " for h=2..,qil,
k=2

and

T(j) = T(nh) 8j 2, + 1,nhi.

Clearly the expected waiting time function (weakly) increases with j. Hence the
larger is the distance between the price of a limit order and the mid-quote, the larger
is the expected waiting time for the order. This result is consistent with the evidence
in Lo, McKinley and Zhang (2001).

Another determinant of the expected waiting time is the proportion of patient
traders relative to the proportion of impatient traders, . The intuition is as follows.
Notice that h determines the priority status of a limit order in the queue of unfilled
limit orders. Actually an n,-limit order can not be executed before n,/-limit orders
have been executed if b < h (when these orders are present in the book, of course).
When r increases, the likelihood of a market order decreases. It follows that the
expected waiting time for the A" limit order in the queue enlarges. It turns out that
the rate of increase in the waiting time from one limit order to the next in the queue of
limit orders depends on r as well. Actually when r > 1(r < 1) the marginal expected
waiting time T'(ny,) § T'(nn_1) is non-decreasing (non-increasing) in h. In this case,
we say that T'(Qis “convex” (“concave”) in h. The next corollary summarizes these

remarks.
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Corollary 1 The expected waiting time of the h*" limit order in the queue of limit
orders increases with r, the ratio of the proportion of patient traders to the proportion
of impatient traders. The expected waiting time function is “conver” when r > 1, and

“concave” whenr <1 .

We show below that these properties of the expected waiting time function influ-
ence traders’ bidding strategies. In the next proposition we express the spreads on
the equilibrium path, i.e. n4,n9,..,n,, in terms of the exogenous parameters. De-
fine Uy, :=n;, §n,_1 for h _ 2 as the spread improvement, when the inside spread
has a size equal to n,. The spread improvement is the number of ticks by which a
trader narrows the spread when he submits a limit order. The larger is the spread

improvement, the more aggressive is the limit order.

Proposition 5 The set of equilibrium spreads is given by:

ny = jfa nq:K7

Y
n, = Nni+ \I/k h:2,...,qi1;

k=2

where
dy
W), = int(2r"'=2) + 1
p = int(2r A)+

and the length of the book, q is the smallest integer such that:

The previous proposition shows that whenever, 2d;7"~! _ A, a limit order trader
finds optimal to undercut or to outbid the best prices by more than one tick (¥, > 1).
Biais, Hillion and Spatt (1995) observe that liquidity suppliers frequently improve
upon the best quotes by several ticks. Our result identifies four determinants for

the spread improvement which could be considered in future empirical investigation.
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These determinants are: (i) the proportion of patient traders, r, (i) the per period
waiting cost, d; (iii) the tick size, A, and (iv) the inside spread. We analyze each of
these determinants in turn.

When r increases, the time-to-execution for a given position in the queue of limit
orders becomes larger. Hence, other things equal, liquidity suppliers bear larger wait-
ing costs (d;T"). Traders react by submitting more agressive orders to preempt good
positions in the queue of limit orders and thereby reduce their time-to-execution. The
same effect operates when d; increases. In this case, traders bear larger waiting costs
because the per-period waiting cost is larger. The smaller is the tick size, the smaller
is the cost of improving upon the best bid and ask prices. Thus a smaller tick results
in larger spread improvements in terms of ticks.

The spread improvement, W, increases (decreases) with h when r > 1 (r < 1).
This means that when r > 1 the spread improvement increases with the size of the
inside spread, while the opposite is true when r < 1. The intuition is as follows.
Consider the (h j 1) trader in the queue of unfilled limit orders . This trader’s time
to execution is T'(ny,_1) instead of T'(ny,) for the trader behind him in the queue. Hence
the difference in expected waiting cost between the h'* and the (h § 1) positions in
the queue of limit orders is equal to (T'(n,) § T (np—1))d;. Intuitively, this should be
the “price” of acquiring the (h j 1) position instead of the h*"position in the queue.
The dollar spread improvement plays the role of this price and, for this reason, it
is approximately equal to (T'(ns) i T(nn_1))d;.2° This shows that the shape of the
waiting time function determines the relationship between the spread improvement
and the inside spread. When r > 1, the waiting time function is convex in h. Hence
liquidity suppliers offer larger spread improvements when the spread is large. When
r < 1, the waiting time function is concave and liquidity suppliers offer larger spread

improvements when the spread is small.

2 InEctdeerne et " 2ritd =0 (n) i T (h;: DX - T he dollarspreed improemanttis
anly gpprodmately equal 10 the di®srence in waiiting asstbecause the setofpricss is disaete.
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Notice that when spread improvements are larger than 1 tick, the traders do not
make use of all the possible prices in equilibrium. This implies that the limit order
book features “holes”, i.e. cases in which the distance between two consecutive ask
or bid prices is larger than one tick.?!

The last part of the previous proposition (Eq.(4)) implies that that the length
of the book decreases when spread improvements get larger. Actually, limit order
traders improve on the best quotes by a larger number of ticks so that a smaller
number of prices on the grid are used. This means that more competitive outcomes
are expected when the length of the book is small. This is the case in particular when
r . 1because (a) spread improvements are large and (b) liquidity is not consumed too
quickly (which leaves time for the inside spread to narrow). For this reason we call the

equilibrium when r _ 1 a High Competition (HC) Equilibrium and the equilibrium

=

when r < 1, a Low Competition (LC) Equilibrium. Using this terminology, we classify

all equilibria in three categories described in Table 1.

Table 1 - Three equilibrium patterns

Equilibrium pattern Description Specification

Oscillating Indistinguishable Traders g =kt &
Spreads oscillate between K and ;.

HC Heterogeneous traders JR<Br _1

High level of competition
among liquidity providers
“Convex” time function
LC Heterogeneous traders
Low level of competition JR<giir<i1
among liquidity providers
“Concave” time function

In the next sections, we show that (i) the stationary probability distribution of
spreads and (ii) the impact of a change in the tick size are strikingly different in HC
and LC equilibria.

2lH oks in the imit ader badk is a phenanenan doaumented by several empirical studies: B i-
ais, H ilian and Spatt (995) - P aris B aurse; ¢ oldstein and Kaajez @000) -1 Y SE;H ol ed,
I iller, and Sandss Q001 &)-Stoddholn ;B erstin, | e, and Kandel Q001 )-T aamo;and Kandel,
L auterbach, ad T kach @000 )-TelA vv.
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3.3 Examples

We illustrate the three equilibrium patterns by numerical examples. The tick size is
A = $0.125. The lower price bound of the book is set to BA = $20, and the upper
bound is set to AA = $22.5. Thus, the maximal spread is K = 20 (KA = $2.5). The

parameters that differ across the examples are presented in Table 2.

Table 2: Three Examples
Example 1 Example 2 Example 3

(Oscillating) (HC) (LC)
dy 0.15 0.10 0.10
dy 0.20 0.25 0.25
0 Any value 0.55 0.45

Table 3 presents the equilibrium strategy for patient (type 1) and impatient (type
2) traders in each example. Each entry in the table presents the optimal limit order

(in terms of ticks) given the current spread (0 stands for a market order).??

Table 3 - Equilibrium strategies

22T he equilibrium strateges in Bxampks 2 ad 3 ©llow from the Tomulkee gven in P ipasitian
5.
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Current Example 1 Example 2 Example 3
Spread Typel Type2 Typel Type2 Typel Type 2

1 0 0 0 0 0 0
2 0 0 1 0 1 0
3 2 2 1 0 1 0
4 2 2 3 0 3 0
5 2 2 3 0 3 0
6 2 2 3 0 ) 0
7 2 2 6 0 6 0
8 2 2 6 0 7 0
9 2 2 6 0 8 0
10 2 2 9 0 9 0
11 2 2 9 0 10 0
12 2 2 9 0 11 0
13 2 2 9 0 12 0
14 2 2 13 0 13 0
15 2 2 13 0 14 0
16 2 2 13 0 15 0
17 2 2 13 0 16 0
18 2 2 13 0 17 0
19 2 2 18 0 18 0
20 2 2 18 0 19 0

Order Placement Strategies

Table 3 reveals the qualitative differences between the three equilibrium types. In
Example 1, j® = jI* = 2, thus patient and impatient traders are indistinguishable.
The inside spread oscillates between the maximal spread of 20 ticks and the reser-
vation spread of 2 ticks. In Example 2 and 3, the traders are heterogeneous since
i =1 and j&* = 3. In Example 2, the inside spreads on the equilibrium path are (in
terms of ticks): fi,3,6,9,13,18,20g. Spreads of other sizes will not be observed.?
In Example 3, the inside spreads on the equilibrium path are (in terms of ticks):
11,3,5,6,7,...,20g. In these two examples, transactions can take place at spreads
which are strictly larger than patient traders’ reservation spreads. However, traders
place much more aggressive limit orders in Example 2 where » > 1. In fact spread

improvements are larger than one tick for all spreads on the equilibrium path in this

2Tabk3 sped es adtias Torpreacs an and o®the e ibrium path - T his is necessary Tora ll
soed catian ofFthe equiibrium strategy.-
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case. In contrast, in Example 3, spread improvements are equal to one tick in most
cases. Hence the market will appear more competitive in Example 2 (r > 1) than in
Example 3 (r < 1).

Ezpected Waiting Time

The expected waiting time function in Examples 2 and 3 is illustrated in Figure
1.This figure presents the expected waiting time of a limit order as a function of the
spread it creates. In both examples the expected waiting time increases when we
move from one reached spread to the next one, while it is constant over the spreads
which are not posted in equilibrium. The expected waiting time is smaller at any
spread in Example 3. This explains the differences in bidding strategies in Examples
2 and 3. When r < 1, limit order traders are less aggressive because they expect a
faster execution.

Book Dynamics

Figure 2 illustrates the book resulting from 40 rounds of simulation making inde-
pendent draws from the distribution of traders’ type. We use the same realizations
for Examples 2 and 3 and look at the dynamics of the limit order book.

As is apparent from Figure 2, the inside spread converges more quickly towards
small levels in Example 2 than in Example 3. Since the type realizations in both
books are identical, this observation is only due to the fact that patient traders use
more aggressive limit orders, in order to speed up execution, in Example 2. If the type
realizations were not held constant, there would be a second force acting in the same
direction. When r is larger than 1, the liquidity offered by the book is consumed less
rapidly than when r is smaller than 1. This means that the likelihood of a market
order arriving while the spread is large is smaller when r > 1. This effect would
reinforce the fact that spreads tend to be smaller in Example 2. We prove this point
more formally in the next section by deriving the probability distribution of the inside

spread.
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Figure 2 - Book Simulation (same realizations of type arrivals for two examples)

Example 2 - Intense competition among liquidity suppliers (r = 1.222)
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Example 3 - Low level of competition among liquidity suppliers (r =0.818)
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Legend:
B1 - Patient buyer, B2 - Impatient buyer, S1 - Patient seller, S2 - Impatient seller
b - a buyers limit order, s - a sellers limit order.



3.4 Distribution of Spreads

We have so far established the structure of equilibrium strategies. Our next step is
to derive the probability distribution of spreads induced by these strategies. In this
way, we show that small spreads are more frequent in markets where r > 1. This
formalizes the intuition that competition in these markets is more intense.We also
use the distribution of spreads in order to calculate measures of market quality in the
next section.

When jE = jE = jf the spread oscillates between K and jf. Thus, the ex-
ante probability of each one of these two spreads is 0.5. Now consider the case in
which traders are heterogeneous, i.e. j&* < ji*. From Proposition 3 we know that an
equilibrium can be described by ¢ spreads: n; < ng < ... < ng. A patient trader
submits a nj,_;-limit order when the inside spread has size n, (h = 2,...,q) and a
market order when he faces a spread of size n;. An impatient trader always submits
a market order (we maintain the assumption that s, = K). Thus, if the inside
spread has size n, (h =2,...,q i 1) the probability that its size becomes n;_; in the
next period is , and the probability that its size becomes n,,; in the next period
is 1 j 0. If the size of the inside spread is n; all the traders submit market orders
and its size becomes ny with certainty. If the size of the inside spread is K then it
remains unchanged with probability 1 § 6 (a market order) or it decreases to n,;
with probability 6 (a limit order). Hence the inside spread is a finite Markov chain

with ¢ _ 2 states. The g £q transition matrix of this Markov chain, denoted by W,

1s:
0 1
0 1 0 &k 0 0
0 0 136 &KE O 0
0 0 0 &k 0 0
W:
0 0 0 &KL 0 156
0 0 0 a0 156

The j* entry in the h*" row of this matrix gives the probability that the size of
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the inside spread becomes n; conditional on the inside spread having size ny, (h,j =
1,...,q). A stationary distribution of this Markov chain, may be regarded as the
long term probability distribution of the inside spreads.?* We denote the stationary

probabilities by u4, ...u,, where wy, is the probability of an inside spread with size n,.

Lemma 2 The Markov chain given by W has a unique stationary distribution. The

stationary probabilities are given by:

g1
= it —i(1 = p)i-2’ (5)
9‘1 + =2 9‘1 (1 '] 9)

(2

Uy

011 § )2
Up = ga—1 n e ?:2 Qq—i(l : H)i_z h = 2, . q (6)

Using this result, Figure 3 depicts the stationary distribution in Examples 2 and

3. The distribution of spreads is skewed toward higher spreads in Example 3 (where
r < 1). In contrast, it skewed toward lower spreads in Example 2 (where r > 1).
This observation is easily explained by considering the expressions for the stationary

probabilities. For h,h' 21,3, ...,qg with h > h/, the previous lemma implies that

Up, ’_
—
("
Up,
Uy rh=1(1 §6)’

which yields the following proposition.
Proposition 6 For a given tick size and given values of the waiting costs

1. If r <1 (LC equilibrium) , up, > uy for 1 = k' < h = q. This means that the

distribution of spreads is skewed towards higher spreads when r < 1.

2. If r > 1 (HC equilibrium) , up, < up for2 - h' < h - q.*> This means that the

distribution of spreads is skewed towards lower spreads when r > 1.

24See Feller ((968).

25T he inequality, Un, < Ure; doss not necsssarily hod Tor P =1 ; een ifr> | _ A cuadlly the
smallsstirside spreed can anly be readhad fram higher spreeds whi e other spreecs aan be reedned
fran both directias (= K &n be reeded ether fran ng;; orfran ny itseld)_ T his implies that
the pradosbi ity of doserving the smallest pcssibe spreed is relatively small Torall values of r.
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Proposition 6 establishes that small spreads are relatively more (less) frequent than
large spreads in markets with intense (low) competition between liquidity providers
(we explained the intuition in the previous section). This results in a smaller average
spread in markets where r > 1 compared to markets where r < 1. For instance, the
expected spread in Example 2 is 8.4 ticks and the standard deviation is 6.2 ticks. In
Example 3 the expected spread is 16.04 ticks and the standard deviation is 3.9 ticks.
The higher standard deviation in Example 2 reflects the fact that the limit order book

in this case features larger holes than in Example 3.

4 Market Quality, Tick Size and Arrival rate

In this section we explore the effect of a change in the tick size or in traders’ arrival
rate on measures of market performance (the average spread and the average waiting
cost). For brevity we restrict our attention to the cases in which traders have different
reservation spreads, i.e. j{t < j&. Furthermore, we maintain our assumption that the
parameters are such that s, = K, so that impatient traders always choose market

orders.

4.1 Measuring Market Performance

We would like to compare various equilibria in terms of market performance. In
order to do so we introduce two measures, which take into account the benefits/costs
accruing to different types of market participants. Our first measure is the expected
dollar spread given by:

DAy
ES =A UpMp
h=1

This is one of the standard measures of market performance. The smaller is the
expected dollar spread, the more distant are transaction prices from the “physical
boundaries” A and B. Thus, smaller bid-ask spreads are associated with higher

profits to liquidity demanders (the impatient traders), since their market orders meet
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more advantageous prices. Thus, we consider jFES as a measure for the welfare of
impatient traders who submit market orders.

Many studies exclusively focus on the bid-ask spread as a measure of market
quality. The suppliers of liquidity, who are perhaps considered to be more professional
traders or intermediaries, are frequently ignored. In our setting, however, we have no
reason to ignore the liquidity providers, since they are traders just like the others.?
Accordingly, our second measure of market quality is the cost of providing liquidity.
The ex-ante expected cost of waiting for the traders posting limit orders (the patient

traders) is:

EC :=d,ET,
q—1
where ET = —h#ﬂnh) We refer to ET as the ex-ante expected waiting time.

It can be interpreted as the average waiting time of limit orders placed by patient
traders.?”

The welfare of the patient traders is determined by two factors: they would like to
minimize their price concessions (or equivalently maximize the spread) in limit orders
and they would like to minimize their expected waiting cost. Thus, (ES § EC)
measures the welfare of the patient traders. Observe that the expected spread is a
transfer payment, while the cost of waiting is a dead-weight loss. This dead-weight
loss is minimized when (a) only patient traders provide liquidity and (b) patient
traders post their reservation spreads so that the expected waiting time is one period.
When jf* < jlt the division of roles is efficient: patient traders provide liquidity to
impatient traders. However, the patient traders post spreads above their reservation
spread for strategic reasons. This is a source of inefficiency since this behavior implies

that the expected waiting time is strictly larger than one period.

266 Iosten Q000 ) abko argues that the welfre of alll groups of trackers mustbe taken into acoount
inewalatias ofped cmarketdsigs-

27T he staticnary prdosbi kities are divided by the prdoabi ity that the insice spreed is ss then K
because no patiat trader submits K-Imitaders.-
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4.2 Tick Size and Market Quality

The tick size has been reduced in many limit order markets in the recent years.?® It
has often been argued that such a decrease would reduce the average dollar spread and
would enhance market quality.?? In this section we analyze the impact a reduction
in the tick size on our measures of market performance. Our main result is that
a decrease in the tick size does not necessarily improve the quality of a limit order
market. In particular it can result in larger average dollar spreads.

We proceed as follows. Let us fix K, di,ds and 6 and suppose that given a tick
size equal to A we obtain an equilibrium with spreads: 1 - ny <ng < ... <n, = K.
Let > 1 be an integer, and let A = A/n be the new tick size. We set K = Kn so
that the dollar value of the largest spread does not change: K A = KA (the change
in tick size does not affect the monetary value of the range in which traders choose
their prices). Now, for the tick size A, we get a new equilibrium characterized by the
spreads: 1 -y <N < ... <N = K, where § = G(n) is the length of the book in the

new equilibrium.?* We compare the two equilibria in the next lemma.
Lemma 3 A decrease in tick size:

=increases or leaves unchanged the length of the book (¢ . q),

=2 decreases or leaves unchanged the monetary value of the smallest q spreads (i.e.

inA - npA for h = 1,..,q).

On the one hand, a decrease in the tick size expands the set of prices which can be
chosen by the traders in the range [A, B]. If limit order traders do not place aggressive
orders, they will make use of the additional prices. This effect increases the length of

the book. On the other hand, the decrease in the tick size shifts downward traders’

2 Farirstance, the T aaito Stodk BExdange in 1996 arthell Y SE in1997.

29SeeH anis (997)Tramvenofthe aguments in favararagairst the reduction in the tidksize.

3 1t be deded thatifs. = K when the tidksizeist¢  then this is still the case when the tidk
size is analker_ T his mears thatimpatient traders kegp using anly market aders when the tids size
isC:
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reservation spread and results in larger spread improvements in terms of ticks (recall
that Wy, is inversely related to the tick size). This effect reduces the monetary value
of the smallest spreads in the book. These two effects have opposite impacts on
the average spread. The first effect increases the average spread whereas the second
effect decreases the average spread. As shown below, which effect is dominant mainly
depends on the intensity of the competition among liquidity providers (r).

The ex-ante expected waiting time for limit orders depends on the length of the
book. For this reason, a change in the tick size can also modify the ex-ante expected
waiting costs for limit order traders. In the next propositions, we use the following

P, . .
notation: 7(g,r) := 142 9% r" Observe that 7(¢,7) increases with 7.

Proposition 7 A decrease in the tick size does not affect the length of the book if
and only if dit(q,r) o KA. In this case, the decrease in the tick size

1. Decreases the expected bid-ask spread.

2. Does not change the ezx-ante expected waiting cost.

The condition dy7(q,r) . KA requires r to be sufficiently large since 7(q,r)
increases with 7. When r is large, liquidity providers submit aggressive limit orders.
For this reason, they do not make use of the new prices created by the reduction in
the tick size. It follows that the reduction in the tick size does not affect the length of
the book in this case. When the change in the tick size leaves unchanged the length
of the book, it has no effect on the probability distribution of spreads (see Lemma
2). However the dollar value of each inside spread posted in equilibrium is smaller
(Lemma 3). For this reason the decrease in the tick size narrows the expected spread.

To illustrate the previous result, consider Example 2 where r = 1.22. The values of
the different parameters in this example are such that the condition dy7(q,7) _ KA
is satisfied. Hence the results of Proposition 7 applies. For instance, Table 4 presents

the inside spreads posted in equilibrium before and after reducing the tick size from
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$
(G = ¢ = 7). The dollar spreads decrease and the expected spread narrows from $1.05

£ to$5- (n=2and K = 40). As expected, the length of the book does not change

to $1.01.

Table 4 - The impact of a decrease in tick size on equilibrium

spreads in Example 2

A =$0.125 A = $0.0625

h Spread (ticks) Spread ($) Spread (ticks) Spread (%)
1 1 0.125 2 0.125

2 3 0.375 6 0.375
3 6 0.75 11 0.6875
4 9 1.125 17 1.0625
5 13 1.625 25 1.5625
6 18 2.25 34 2.125
7 20 2.5 40 2.5

Now we consider the case in which the length of the book enlarges when the tick
size is reduced.

h i
Proposition 8 Suppose that di7(q,7) < A K j

from A to A= A/n

% . Then a decrease in the tick size

1. Increases the length of the book (G(n) > q).

2. Increases the ex-ante expected waiting cost (EC' < EC).

h i
The condition dy7(q,r) < A K j % requires 7 to be sufficiently small since 7(q, )

increases in r. Intuitively when r is small, patient traders do not submit aggressive
limit orders. This means that the new prices created by the reduction in the tick size
are used by patient traders. This effect enlarges the length of the book and creates
q 1q new large spreads. Hence there are more limit orders in the book and the average
waiting time (or cost) increases. The new spreads are in the range H, Ki. Thus they
contribute to widen the expected spread. At the same time the decrease in the tick

size drives the first ¢ inside spreads smaller in monetary terms. Therefore the impact

29



of a decrease in the tick size on the expected spread is ambiguous. Cases in which the
expected spread enlarges when the tick size is reduced do exist. For instance consider
a reduction in the tick size from $1 to $:= (i.e. 7 = 2) in Example 3 where r = 0.818i
The values of the parameters are such that the condition d;7(q,7) < A K iy
is satisfied. The decrease in the tick size causes the length of the book to grow
dramatically from g = 18 to ¢ = 32. The expected spread and the expected waiting
time rise from $2.0 to $2.2 and from 8.86 to 9.87 periods, respectively.

For the values of r such that di7(q,7) < AK, there always exists a value of 5
large enough such that the condition in Proposition 8 holds true. Consequently for
these values of r, the ex-ante expected waiting cost starts increasing when the tick
size becomes too small. In these cases, the tick size which maximizes welfare (i.e.
minimizes the ex-ante waiting cost) is always strictly positive. A policy implication is
that exchanges and regulators should consider the impact of the tick size on average

waiting costs for liquidity suppliers and not only on spreads.

4.3 Arrival Rate and Market Quality

In presence of waiting costs, the order arrival rate is a determinant of traders’ bidding
strategy. Demsetz (1968), p.41 points out that: “The fundamental force working
to reduce the spread is the time rate of transactions. The greater the frequency of
transacting, the lower will be the cost of waiting in a trading queue of a specified
length, and, therefore the lower will be the spreads that traders are willing to submit to
preempt positions in the trading queue.” In this section, we argue that the impact of a
decrease in the order arrival rate on market quality is ambiguous. Actually a decrease
in the order arrival rate induces liquidity suppliers to submit more aggressively priced
limit orders when the inside spread is large. For this reason, counter-intuitively, a
decrease in the order arrival rate does not necessarily increase the expected spread.
We provide an example supporting this claim.

Let ¢t be the average length of a period in calendar time and let ¢; be trader ¢’s
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waiting cost per unit of calendar time. In this case the per period waiting cost is

The larger is the order arrival rate (the smaller ¢), the smaller is the per period
waiting cost, for a given level of impatience (8;). Hence variations in the order arrival
rate are tantamount to variations in the per period waiting cost. We consider the
effect of an increase in traders’ waiting cost (a decrease in traders’ arrival rate) using
the characterization of the equilibrium provided in Section 3.3! Let ¢ be the original
length of the book and ¢ be the length of the book after the decrease in traders’

arrival rate.
Proposition 9 A decrease in traders’ arrival rate (an increase in dy) :

1. decreases or leaves unchanged the length of the book (G - q),
2. decreases or leaves unchanged the ex-ante expected waiting time.

3. increases or leaves unchanged the ¢ smallest inside spreads posted in the book.

For given bidding strategies, an increase in d; enlarges liquidity providers’ ex-ante
expected waiting cost. In order to counteract this effect, liquidity providers react by
submitting more aggressive orders (spread improvements get larger). For this reason
the length of the book tends to decrease when traders’ arrival rate decreases. As
a consequence the ex-ante expected waiting time (which is expressed in number of
periods) becomes smaller. Hence the net impact of a decrease in traders’ arrival rate
on the ex-ante expected waiting cost (EC') is ambiguous.

As patient traders’ waiting cost increases, they require a larger compensation to
submit limit orders. For instance, their reservation spread increases. This explains

the last part of the proposition. However limit order traders are more aggressive

3L Ifthe aondition s = K holts tree Tragven el of perperiad waiting acstfor an impatient
trackr; itako hols true Torany gy beel_H ence the dharacterizatiaon ofthe equi ibrium gvenin
Sectian 3 when traders are heterogaeas remains valid when the ader airival rate dearesses -
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when spreads are large so that the inside spread adjusts more quickly to small levels.
It follows that an increase in liquidity providers’ waiting costs can indeed result in a
smaller average spread.

We illustrate the previous discussion with the following example. Suppose that in
Example 3, the per period waiting cost increases from d; = 0.1 to d; = 0.249. In this
case, calculations show that the length of the book becomes § = 9 instead of ¢ = 18.
The expected spread narrows and is equal to $15.85 instead of $16.03. The average
waiting time decreases as well (6.10 periods instead of 8.86 periods). However, the

ex-ante expected waiting cost enlarges and is equal to $1.52 instead of $0.886.

5 Extensions

Qeuing at the inside spread

We have assumed that traders cannot queue, i.e. can not place limit orders at
the existing inside quote. In reality, such quotes are allowed. Then time priority
determines the sequence in which limit orders placed at the same price are executed.
In the next proposition, we identify a condition on the parameters such that the
equilibrium we have described in Section 3 is unchanged when traders are allowed to
queue at the best quotes. We just focus on the case in which traders are heterogeneous

for brevity.

Proposition 10 When time priority is enforced and traders are heterogeneous, the
equilibria when traders are allowed to queue at the inside spread and when they are

not are identical if & _ 1.

The intuition is as follows. Suppose that traders use the trading strategies de-
scribed in Section 3 and give them the freedom to queue at the best quotes. Under
the condition of the proposition, traders prefer to submit limit orders improving upon
the inside spread rather than queuing. Hence traders’ strategies form an equilibrium

even though traders have the possibility to queue. Not surprisingly queuing is not
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optimal if (i) liquidity providers’ waiting cost is large, or (ii) the tick size is small.
Queuing increases the expected waiting time substantially, so that undercutting is
always optimal when patient traders’ waiting cost is sufficiently large. When the tick
size is small, liquidty providers can seize time priority at a low cost since they need
to undercut by a small amount only.??

Multiple trader types.

Introduction of multiple trader types (ordered by their patience level - reservation
spread) does not change the model qualitatively. In particular the model still exhibits
sensitivity to the proportion of relatively patient traders in the population (see Kadan
2001). The presentation of the model is more complex, however. In particular, more
than three distinct types of equilibria do appear.

Commonality in liquidity.

Recent literature (see Chordia, Roll, and Subrahmanyam (2001), and Huberman
and Halka (2001)) identifies common elements in liquidity across stocks. The conven-
tional models have difficulty explaining this phenomenon, since private information
arrivals are unlikely to be correlated across stocks, and one does not expect strong cor-
relation in dealer inventory levels either. Market liquidity in our model is determined
by the proportion of patient traders, trader arrival rates, and the tick size. The first
two parameters vary continuously over time, and may very well have market-wide
components.® In such a case our model predicts commonality in liquidity across
stocks that is consistent with the empirical findings. The model generates many
predictions that allow to test this conjecture.

Professional liquidity provider.

The analysis of Section 3 reveals that patient traders’ strategic behavior can result

in transactions taking place when spreads are wide (relative to liquidity providers’

321tis worth stiessing that the aondition gven in P ripasitian 10 is satis ed in all the rumerical
eanpks we gae in the pgper. Furttermare this aoditian is sut=dent for queling at the inside
quote 1o be sub-gotimal but not necessary.-

33T hese wauld be axsistentwirth the papularnotians sudh as\ active market ;)\ jitlery inestors'™”
ad others._
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reservation spreads), especially in markets where the proportion of patient traders
is relatively small (r < 1). Hence the book offers profit opportunities that invite
submission of limit orders by a professional trader (the “intermediary”) monitoring
the market. We briefly discuss the impact of such an intermediary on traders’ behavior
in our model.

We assume that the intermediary is risk neutral and has no cost of waiting.34
When he intervenes, he submits two limit orders that improve on the current spread
by one tick from each side. Thus, if the inside spread has size s, its new size becomes
s §2 after the intermediary’s intervention. In this way the intermediary earns (s §2)A
when subsequent market orders clear his limit orders. We also assume that there
is a spread sg below which the intermediary does not intervene. This reflects the
fact that he incurs (per share) trading costs or monitoring costs. Since these costs
are non-negative, we assume sy _ 3. We refer to the range B3y, K1 as being the
intermediary’s intervention zone. When the inside spread is in this intervention zone,
the intermediary will intervene with probability 3 (the intervention rate). To simplify
we take the intervention rate as exogenous. An intervention rate less than 100% can
be due to the fact that the intermediary cannot monitor continuously the market (e.g.
he is active in several markets).

Let T%(j) be the expected waiting for a j-limit order when the intermediary’s

intervention rate is #. The formula given in Lemma 1 generalizes as follows

8 P,
= [1+ 970 o ()T(R)]

ao(j)

for j=1,.,s il

T°(j) = P (7)
§ . . j—1 .

= (14+B[T°G-1)+TP (-2)|+(1-8)  3_) k()T (k) for
ao(j)(1-5)

j = S, ,K

Using Eq. (7) and proceeding recursively, as in Section 3, we can calculate traders’
optimal placement strategies for each intervention rate. Interestingly even a small in-
tervention rate creates a large change in the behavior of liquidity suppliers, especially

when the proportion of patient traders is relatively small (r < 1). We demonstrate

34T his essumptian is notaudal butsimpl es the anabysis .
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this using Example 3. Recall that in this example we set d; = 0.25, dy = 0.1 and
0 = 0.45 (r = 0.82). Table 5 presents the optimal strategies of a patient trader for
various intervention rates®>. The intervention zone is set to I3, 201, i.e. the costs of

the intermediary enable him to intervene whenever the spread is at least sy = 3 ticks.

Table 5

Patient traders’ optimal strategies for various intervention rates
Current §=0.00 =010 =015 [F=0.25

Spread
1 0 0 0 0
2 1 1 1 1
3 1 1 1 1
4 3 1 1 1
5 3 4 1 1
6 5} 4 5 1
7 6 4 5 1
8 7 4 5 1
9 8 8 5 1
10 9 8 5 1
11 10 8 5} 1
12 11 8 5 1
13 12 8 5 1
14 13 8 5} 1
15 14 14 5 1
16 15 14 5 1
17 16 14 16 1
18 17 14 16 1
19 18 14 16 1
20 19 14 16 1

Clearly patient traders are more aggressive in presence of the intermediary (G > 0)
than when he does not intervene (5 = 0). Intuitively the threat of intervention by the
intermediary increases liquidity providers’ expected waiting time, other things equal.
In turn they submit more aggressive limit orders in order to shorten execution times.

When 3 = 0.25, the competitive pressure created by the intermediary is so strong

35R ecall that the qptimal strategy of impatia Tt trackers when ™ =10 is 1o subomit market arders
aly.ltEmars sowen > 0:
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that the patient traders submit limit orders that prevent the intermediary profitably
submitting orders (the inside spread is less than sg).

This simple illustration demonstrates that adding a designated liquidity provider
to the pure order-driven market forces liquidity suppliers to submit more aggressive
limit orders. This translates into lower trading costs for liquidity demanders. For
some intervention rate (e.g. [ = 0.25), the presence of the designated liquidity
provider also reduces the ex-ante expected waiting cost for liquidity suppliers. Some
exchanges using limit order markets (e.g. the Paris Bourse or the Frankfurt Stock
Exchange) encourage the intervention of designated liquidity providers in less liquid

stocks. The previous analysis provides a rationale for this policy.

6 Conclusions

We model the limit order book as a market for liquidity provision and consumption. In
contrast with the extant literature we consider the optimal order placement decision
of liquidity traders who incur waiting costs. Furthermore we endogenize the expected
waiting time of limit order traders.

The proportion of patient traders relative to the proportion of impatient traders
turns out to be a main determinant of the dynamics of the book. Actually it de-
termines the intensity of competition between liquidity providers and the speed at
which liquidity is consumed. In markets with a relatively large proportion of patient
traders, traders submit aggressively priced limit orders in order to reduce their exe-
cution time. Furthermore market orders are less frequent. The combination of these
two effects imply that the probability distribution of spreads is skewed towards small
spreads in these markets.

We also find that a decrease in the tick size may enlarge the average inside spread
in markets where the proportion of patient traders is relatively small. Actually in
this case, patient traders do not place very aggressive orders. A finer price grid gives

them the possibility to place even less aggressive orders by expanding the set of eligible
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prices. A decrease in traders’ arrival rate induces liquidity providers to place limit
orders which are more aggressively priced in order to get faster execution. For this
reason, counter-intuively, lower trading activity does not necessarily result in smaller
average spreads.

Finally, we show that a designated market-maker increases competitive pressures
among liquidity providers. In this way his presence can drastically improve the provi-
sion of liquidity (lower spreads and smaller average waiting costs) when the proportion

of liquidity providers is small.
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7 Appendix

Proof of Lemma 1

Suppose a trader (say a buyer) has submitted a j-limit order. Suppose j > 1.
The next trader (a seller) must choose among j options. With probability ag(7), he
submits a market order that clears the buyer’s limit order. With probability ax(j),
the seller submits a k-limit order. In this case the seller has to wait T'(k) periods until
his order is cleared. From that moment the original buyer has to wait another 7°(j)
periods. This follows from Assumption A.3. To see this point, suppose that j = 2
for instance. The seller submits a 1-limit order. Then a buyer arrives who clears the
seller’s order and the original buyer is back to the initial situation (the inside spread
is 5 = 2 and the buyer has priority). Consequently, the original buyer’s expected
waiting time, 7°(j), is:

X1

TU%:%U)+#J%UH1+T%%+TUH- (8)

P,
Solving for T(j) and using the fact that = 7_yox(j) = 1 yield Eq.(2). The same
argument applies to a seller. B

Proof of Proposition 2

The proof of this proposition relies on two lemmas that we prove in turn.

Lemma 4 Suppose that facing a spread of size s, tradert submits a j-limit order with
0 - 7 <s. In this case facing a spread of size s+ 1, he either submits a s-limit order

or a j-limit order.

Proof. By assumption trader ¢ submits a j-limit order when he faces a spread with

size s. Thus:

m(j) > m(k) k=0,.J il

m(j) o m(k) k=j+1,.,s il
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Now, suppose that trader i faces a spread of size s+ 1. If m;(s) - m;(j) then trader
i will submit a j-limit order since m;(j) > m;(k) for all k = 0,....,57 § 1,7+ 1,...,s.
If m;(s) > m(j) then trader ¢ submits a s-limit order since m;(s) > m;(k) for all

k=0,.,s§1. &

Lemma 5 Suppose that facing a spread of size s, an impatient trader submits a j-
limit order with j _ 1. In this case facing a spread of size s, a patient trader submits

a limit order as well.

Proof. Suppose on the contrary that a patient trader submits a market order when

the inside spread has a size equal to s. It follows that:
0 -m(0) im(j) = WA+TG)d - §JA+T(j)d2 =m(0) i m(j), & . L.

But this means that an impatient trader prefers a market order to a j glimit order
- a contradiction. W

When the inside spread is equal to one tick, all the traders submit a market order,
whatever their type. Now suppose that a patient trader faces a spread of two ticks

and j _ 2 (i.e. d; > A). If he submits a 1-limit order he obtains:
7T1(1) =A idl < 0.

Therefore he prefers a market order. From Lemma 5 it follows that an impatient
trader also prefers a market order when he faces a spread of two ticks. This implies
that T'(1) = T'(2) = 1. By induction it follows that facing any spread in R, j{i, all
the traders submit market orders, whatever their type and that T'(1) =T'(2) = ... =
T(R) = 1.

Now suppose a patient trader faces a spread with size jI* + 1. Lemma 4 implies
that he may either submit a j*- limit order or a market order. He obtains a larger

payoff with a j-limit order since
m(r) =1 A i T()d = 1" A i di > 0.
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From Lemma 4 it follows now that the patient type submits limit orders for all spreads
s 2hf +1,Ki. As for the impatient type there are two cases:

Case 1: The impatient type submits a market order for each s 2 hf + 1, Kiin
which case we set s, = K.

Case 2: There are spreads in H, K1 for which the impatient type submits limit
orders. In this case let s. be the smallest spread that an impatient trader creates
with a limit order. By definition of s., the impatient trader submits a market order
when he faces a spread s 2 H, s.1 and a s.-limit order when he faces a spread with
size s, + 1. Lemma 5 implies that the patient type also submits a limit order when
he faces a spread with size s, + 1. Then, from repeated application of Lemma 4, it
follows that both patient and impatient traders submit a limit order when they face a
spread in R, + 1, K'I. Finally it cannot be optimal for an impatient trader to submit
a limit order which creates a spread smaller than his reservation spread. This implies
s, . jk.m

Proof of Proposition 3

Since we assume that s, = K the impatient type always submits market orders.
From Proposition 2, a patient trader submits a market order when he faces a spread
in K, j%i and a j&-limit order when he faces a spread with size jf + 1. Repeated
application of Lemma 4 shows the existence of spreads n; < ny < ... < n, such
that facing a spread in kmy, 4+ 1, 1,11 the patient trader submits a ny-limit order for
h=1,..,q il Clearly, n; = jff and n, = K. ®

Proof of Proposition 4

When they observe a spread with size j&, all the traders submit a market order.
Therefore T'(ny) = T(jf) = 1. Let h 2,3, ...,q9. Suppose that the posted spread
is s 2my,_; + 1,n,1. When he observes this spread, a patient trader submits a nj,_1-

limit order and an impatient trader submits a market order. Therefore ag(s) =1 §0
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and a,, ,(s) = 6. It follows from Lemma 1 that

T(s) = —— (1 4+ 0T (ny_1)] , 8 21 + 1,y (9)

Hence T'(¢is constant for all s 2 hm,_; + 1,n,1. Using Eq.(9) and the fact that
T(ny) = 1, we obtain

T(nps1) i T(ng) =r(T(ng) § T(np-1)) for h _ 2, (10)

=

and

T(ny) i T(ny) =2r>0.

The claim follows now by repetitive application of Eq.(10) and the fact that T'(n,) =
1.m

Proof of Corollary 1 Immediate using the expression for the waiting time
function. H

Proof of Proposition 5

Since n, = np_1 + ¥y, we immediately get that n, = ny + P ],:j V... Furthermore
since n, = K, it must be the case that ¢ is the smallest integer such that n; +
Piig U, _ K. Proposition 3 implies that facing a spread of nj; the patient type

prefers a ny-limit order over a nj,_-limit order for h = 2, ..., q. Hence:
nhA i T(nh)dl > nh_lA 1 T(nh_l)dl.

Rearranging and using Proposition 4 yields for h = 2,..,q :

Uy, :=n, §np_1 > (T(nh) i T(nh_l))— = 27“h_ —_. (11)

Again from Proposition 3, facing a spread of n;, a patient trader (a) strictly prefers
a ny,_1-limit order over a limit order which creates a spread with size n;, j 1 or (b)

np—1 = np, § 1. Therefore

nh_lA iT(nh_l)dl - (nh 1 I)A iT(nh 1 1)d1.
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Rearranging and using the fact that T'(n, §1) - T(ny) we obtain for h = 2,...q:

d d
Uy =np inaor - (T(n) i T(nh_l))zl +1= th—lzl + 1. (12)
Combining (11) and (12) we have for h =2, ..., ¢:
Sy
Uy =int(2r"—) + L. (13)

A
|

Proof of Lemma 2

We first show that the Markov chain given by W is (a) irreducible and (b) a-
periodic.

The Markov chain is irreducible. Observe that given any two states ji, jo
with 1 - j; and jo - q there is a positive probability that the chain will move from
J1 to jp after a sufficiently large (though finite) number of transitions. This implies
that any two states in the chain communicate, hence the chain is irreducible.

The Markov chain is a-periodic. Notice that W,, =1 §60 > 0. This means
that when the chain is in state g, there is a probability equal to (1 § 6)™ that it will
stay in this state for the next m transitions, 8&n _ 1. Since state ¢ communicates
with all the other states of the chain, it follows that no state has a period greater
than 1. Thus the chain is a-periodic.

These properties imply that the Makov chain is ergodic. Being ergodic, the in-
duced Markov chain yields a unique stationary distribution of spreads (see Feller
1968). Let v = (u4,...,u,) denote the row vector of stationary probabilities. The
stationary probability distribution is obtained by solving ¢+ 1 linear equations given
by:

ulW =wu and ue =1, (14)

where € stands for the unit column vector. It is straightforward to verify that the

probabilities given by Eq.(5) and Eq.(6) are a solution of this system of equations. B
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Proof of Lemma 3
We first show by induction on h that i, A - npA for all b = 1, .., g. We start with

h = 1. Applying Eq.(3) to both equilibria we obtain:

d d

Zl < m 'Z1+17 (15)
d; N d;

= < n -T+17

A A

which imply
d d d
ny |n1<Al+1 izlzl‘f‘zl(?? i) <l+mnil).

Rearranging yields n; < nn; 4+ 1 and since 7, n; and n, are integers we conclude
that 72; - nni. Multiplying both sides of this inequality by A yields s A - m A as

expected. Now, let h be an integer satisfying: 1 < h - ¢ j 1. From Proposition 5 we

conclude:
d d
orh= 1Z1 +np1 - np < 27“h_1Z1 +np_1 +1, (16)
dl ~ _ dl ~
2h1 + 7 - n <27“h 1T—i—n_+1.
A h—1 h A h—1
Rearranging:

1 1
A i, < 2rt 1d(Z A)+nh1lnh 1+ 1 (17)
d
= thAl(ﬁ 1) +7p1 §np1+ 1

The induction hypothesis yields 751 = nmp_1, or Ap—1 & Pp—1 = Np—1(n §1). From
Eq. (16) we have 2rh_1% - ny § Np_1. Substituting these two inequalities into Eq.

(17) yields:

i Ann < (n §nn-1)(n §1) Fnp-i(n § 1)+ 1,
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or ny, < npn -+ 1. Since ny,, n and 7 are integers we obtain n, - n,n. Multiplying both
sides by A yields inA - npA as expected. Finally consider h = q. There are two
possibilities. If

hea .

ny + 9, _K,
k=2

then ¢ = ¢. In this case n, = K which implies that ﬁqA =n,A. If
hea .
nm+ 8, <K,
k=2
then g > ¢. In this case n, < K which implies that ﬁqA < ngA. Hence we have
proved that 7i,A - n,A, 8 -gand § _ ¢. ®
Proof of Proposition 7
Suppose that di7(q,r) _ KA. First we prove that ¢(n) = q,8) _ 1. Suppose on
the contrary that ¢(n) > ¢. In this case 7, < K. Furthermore, in equilibrium, when

he faces a spread of 7441,the investor is better off submitting a 7, jlimit order rather

than a market order. The two remarks imply
0<nA §dT(h,) < KA §d,T(n,) = KA §d,T(R,)

Using Proposition 4 we observe that T'(72,) = 7(q,r). Hence the previous inequal-
ity implies that
0< KA jdiT(g,7),

in contradiction to our assumption. This shows that d;7(¢,7) _ KA is a sufficient
condition for G(n) = ¢,8y _ 1. In order to prove that this condition is also necessary

we need the following lemma.

h i
Lemma 6 Suppose that di7(q,7) < A K j§ % . Then a decrease in the tick size from

A to A = A/n increases the length of the book (i.e. 4(n) > q).

Proof. Suppose on the contrary that ¢(n) = ¢. Proposition 5 implies that

- d 2rh-14
Ty - it R 1 - Tz& L1, ® -h-g
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Furthermore

-9
A
It follows that:
- X d K1
K=+ U, -=1+2 " H+4q
h=2 A h=1

Multiplying by A both sides of the inequality and using the fact that KA = KA
yield " "

A K j - di7(q,r)

I I

- a contradiction. W )

Observe that if d;7(q, ) < KA, there exists n such that d;7(q,r) < A hK i %I. It
then follows from the previous lemma that the condition dy7(g,r) _ KA is necessary
for the length of the book to be unchanged when the tick size is reduced.

Now we observe that the stationary probability distribution of spreads is not
affected by a reduction in the tick size if this reduction leaves unchanged the length
of the book. This implies that the ex-ante expected waiting time does not change
when the reduction in tick size has no impact on the length of the book. Furthermore
Lemma 3 implies that each one of the g spreads (weakly) decreases when the tick size
decreases. This implies that the expected spread weakly decreases with the tick size
under the condition of the proposition. B

Proof of Proposition 8

The first part of the proposition follows from Lemma 6 that we have established
in the proof of the previous proposition. For the second part of the proposition, we
use Lemma 7 below. Let uy,...,u; and 4y, ..., 45 denote the stationary probabilities
of the inside spreads in equilibrium when the tick sizes are A and A, respectively.
Similarly we denote by EC and EC the ex-ante expected cost of waiting in the two

equilibria.
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Lemma 7 If g < § then uy, >y forh=1,....q.

Proof. Let h be a spread with h = 2, ...,q. From Eq.(6) we have:

- P - i )
up 01 h(1 § )2 ¢9q‘1+ 1,01 §o)y 2
i, g1+ 9, 0a-i(1 )2 0i—h(1 § 0)h—2
B LR L (0 1) S SLtE 1)
= pia Py Lo ?:2 gq_i(l i 9)1‘—2 T opi-1 4 L ?:2 eq_i(l i 9)1‘—2

The proof for the case h = 1 is similar. W

Define wy, := 13% forh=1,....,q i1 and wy, := 12% forh=1,....,¢ §1. Then
EC =d, P}’;ll wyT(ny) and EC = dy PZ;ll W T (7). It follows from Lemma 7 that
Wy, < wp, for h=1,...,q §1. Since T'(n,) = T(ny) for h=1,...,q i1 and since T'(ny)

is increasing in A we have:

. Kl x1 K1
EC § EC = d; @Tth(ﬁh) + d; @Tth(ﬁh) idi th(nh)
gfl h=q =1
x)1 K1
= d 4 @Tth(ﬁh) 1 (wh 1 QIJh)T(ﬁh)S
2h:q h=1 3
®1 K1
> d 4 ﬁ]hT(ﬁq) i (wh i ﬁ]h)T(ﬁq)s
h=q > h=1 3
& 1 9(1
= le(ﬁq) 4 Wy, i (wh i ﬁ]h)s =0
h=q h=1

Thus EC > EC as required. B

Proof of Proposition 9

Part 1: The length of the book is the smallest integer ¢ such that j*+ P ’gig Uy
K.Since jf and ¥, increase with dy, for all & _ 2, the length of the book cannot
increase when d; increases.

Part 2: The ex-ante expected waiting time is given by ET = Pl,z:{(—“h—)T(nh).

1-ugq

The ratio (;*2-) does not depend on ¢ (See Eq.(5) and (6)). Furthermore T'(n;) does

Uq
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not depend on q. Hence each term in the sum which gives ET is unaffected by a
change in the length of the book. However the number of terms increases with the
length of the book. It immediately follows that ET decreases or is unchanged when
dy increases.

Part 3:By induction on h. Let dj be patient traders’ waiting cost after the
decrease in the order arrival rate (i.e. d; < d}). We denote 7, the h'* spread after

this decrease. For h = 1 we know that:

d
ny = mt(zl) + 1 and 1y = int(

%
21

1
AL

and since d; < dj, then ny; - n;. For h =2,....¢ i 1, we have from Proposition 5:

d

n, = Z'nt(QTh_lzl) +np_1 + 1,
d*

ﬁh = Z'nt(QT'h_lzl) -+ ﬁh—l + 1.

Therefore, from the induction hypothesis and since d; < dj we obtain that n; -
iy, Finally for h = g, we have ng = K and ng; - K (the inequality is strict if § < )
so that n; - ng and the result is proved. B

Proof of Proposition 10

Assume that traders follow the same trading strategies as in the equilibrium in
which they are not allowed to queue. We identify below a condition under which these
strategies still form an equilibrium when traders are allowed to queue at the inside
spread. Consider a patient trader who faces a spread equal to ny,. If he improves upon
the inside spread, he optimally chooses a limit order which creates a spread equal to
np_1 given the strategies followed by the future traders. Hence, we only need to find a
condition under which this trader is better off undercutting the inside spread rather
than queuing at the best quotes.

Let T'(ny,2) be the expected waiting time of the trader if he decides to queue by

placing an order at the inside quote. The trader is better off undercutting iff

51



nh_lA iT(nh_l)dl - nhA iT(nh,Q)dl, 8h - 1,

or

(nh inh_l)A - [T(nh,Q) iT(nh_l)] di 8h - 1. (18)

We now identify a condition under which this no queuing condition holds. This
requires computation of T'(ny, 2).

Let T%%(ny) be the expected waiting time for one trader (say ¢) posting a spread
np, when the next person trades in the same direction as trader i (for instance if
trader 7 is a buyer then the next trader is a buyer as well). This situation never
occurs on the equilibrium path. It may occur however if a trader deviates from the
equilibrium strategy by deciding to queue. Hence considering this situation is helpful
to compute T'(np,2). The next trader can either be a patient trader or an impatient
trader. If the trader is patient and h _ 2, he submits a limit order which creates
a spread equal to np_1. After an expected time equal to T'(n,_1), this order will
be cleared off and the order book will be back to the initial situation. If the trader
is impatient, he will submit a market order. Following this order, the new spread
posted in the book can be npy1 or ny. The second case occurs when the market order
is executed at one of the two border prices, A or B, (because at these prices depth is
infinite). From this point on, the expected waiting time for trader ¢ will be T'(nj41)

or T'(ny,). Since T'(np) < T(npi1), we deduce a lower bound for 7°%(ny), namely

Tsa(nh) >1+4+ G(T(nh_l) + Tsa(nh)) -+ (1 i G)T(nh) 8h .2,

or

1
156

Tsa(nh) > -+ GT(nh_l) + (1 i G)T(nh)g 8h o 2.

From Proposition 4, we know that T'(ny,) §T(n4y—1) = 2r"~'. Furthermore r ~ t&;.

Using these results we can rewrite the previous inequality as:
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Tsa(nh) > 2T(nh) 8h - 2. (19)

For h = 1, we can follow the same reasoning. The only difference is that all the
traders (patient or impatient) submit a market order when they face spread with size
n;. We obtain

T (ny) > 2T (ny) = 2.

Now consider a trader who decides to queue when the inside spread is n;. The
trader who is in front of him in the queue has an expected waiting time equal to
T'(ny). Once this trader is executed, the deviant acquires price and time priority and

his expected waiting time is 7%%(ny,). It follows that:
T(ny,2) =T(ng) + T°%(ny).
Using Inequality (19), we deduce a lower bound for T'(ny, 2) :
T(nn,2) > 3T (ny) 8h _ 2.

For h = 1, we obtain

T(ny,2) >T(n) + 2T (nq) = 3.

Substituting the lower bound for T'(n;,2) in Condition (18), we rewrite the no

queuing condition as
(np inn-1)A - BT (ny) § T(np-1)9dy 8h _ 2. (20)
Furthermore, using Proposition 5, we deduce that
(np §np-1)A <A+ 2rh=1q,
Hence a sufficient condition for Condition (20) is

A2 dy - BT(m) § T(na1)9ds, 8h _ 2.
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or

A - 2T(ny)dy, 8h _ 2. (21)

For h = 1, we follow the same reasoning and we obtain that a sufficient condition

for no queuing when the inside spread is n; is

A - 2T(ny)d;. (22)

If Condition (22) holds true then Condition (21) is satisfied as well since T'(ny,)

increases in h. Thus the sufficient condition for no queuing at any inside spread is:

| &
!
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